Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics

Author:

Attardi Andrea123,Fulton Timothy1ORCID,Florescu Maria4,Shah Gopi25,Muresan Leila6,Lenz Martin O.6ORCID,Lancaster Courtney1,Huisken Jan27,van Oudenaarden Alexander4,Steventon Benjamin1ORCID

Affiliation:

1. Department of Genetics, University of Cambridge, Cambridge, UK

2. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

3. STEBICEF Department, Università degli Studi di Palermo, Palermo, Italy

4. Hubrecht Institute, Utrecht, The Netherlands

5. Cancer Research UK, Cambridge Institute, Cambridge, UK

6. Cambridge Advanced Imaging Center, Cambridge, UK

7. Morgridge Institute for Research, Madison, USA

Abstract

During gastrulation, embryonic cells become specified into distinct germ layers. In mouse, this continues throughout somitogenesis from a population of bipotent stem cells called neuromesodermal progenitors (NMps). However, the degree of self-renewal associated with NMps in the fast-developing zebrafish embryo is unclear. With a genetic clone tracing method, we labelled early embryonic progenitors and find a strong clonal similarity between spinal cord and mesoderm tissues. We followed individual cell lineages by light-sheet imaging, revealing a common neuromesodermal lineage contribution to a subset of spinal cord tissue across the anterior-posterior body axis. An initial population subdivides at mid gastrula stages and is directly allocated to neural and mesodermal compartments during gastrulation. A second population in the tailbud undergoes delayed allocation to contribute to the neural and mesodermal compartment only at late somitogenesis. Cell tracking and retrospective cell fate assignment at late somitogenesis stages reveal these cells to be a collection of mono-fated progenitors. Our results suggest that NMps are a conserved population of bipotential progenitors, whose lineage varies in a species-specific manner due to vastly different rates of differentiation and growth.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3