Orientation of Demagnetized Bees

Author:

GOULD JAMES L.1,KIRSCHVINK J. L.2,DEFFEYES K. S.2,BRINES M. L.3

Affiliation:

1. Department of Biology, Princeton University, Princeton, N.J. 08544, U.S.A.

2. Department of Geological and Geophysical Sciences, Princeton University, Princeton, N.J. 08544, U.S.A.

3. Rockfeller University, New York, N.Y. 10021, U.S.A.

Abstract

The orientation of honey bee dances is affected by the earth's magnetic field. Honey bees possess localized, well-oriented, stable and superparamagnetic domains of magnetite. Four lines of evidence suggest that the superparamagnetic domains of bees are more likely to be involved in magnetic field detectors than the stable domains. (1) Although the stable domains varywidely in size and number between bees, approximately 2×108 superparamagnetic domains are found reliably in all bees, and are restricted to there latively narrow size range of 300–350 Å. This suggests that the superparamagnetic domains are more likely to have a biological function. (2) Behavioural observations of dances in null fields are difficult to reconcile with astable-domain detector but are clearly predicted by many superparamagnetic detector models. (3) When honey bees are demagnetized, their ability to orient to the earth's field is unaffected. This suggests that the detector either utilizes the super paramagnetic domains or depends on aligned anisotropic stable domains processed without regard to magneticpolarity. (4) Bees that have only superparamagnetic domains are able nevertheless to orient to the earth's magnetic field, a phenomenon which indicates that permanent domains may not be required for detection.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3