Effect of ambient temperature on sleep breathing phenotype in mice: the role of orexins

Author:

Berteotti Chiara1ORCID,Lo Martire Viviana1,Alvente Sara1,Bastianini Stefano1ORCID,Matteoli Gabriele1,Silvani Alessandro1ORCID,Zoccoli Giovanna1

Affiliation:

1. PRISM Lab, Department of Biomedical and Neuromotor Sciences, and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, S. Orsola University Hospital, Alma Mater Studiorum - University of Bologna, Bologna, Italy

Abstract

The loss of orexinergic neurons, releasing orexins, results in narcolepsy. Orexins participate in the regulation of many physiological functions, and their role as wake-promoting molecules has been widely described. Less is known about the involvement of orexins in body temperature and respiratory regulation. The aim of this study was to investigate whether orexin peptides modulate respiratory regulation as a function of ambient temperature (T°a) during different sleep stages. Respiratory phenotype of male orexin knockout (KO-ORX, n=9) and wild-type (WT, n=8) mice was studied at thermoneutrality (T°a=30°C) or during mild cold exposure (T°a=20°C) inside a whole-body plethysmography chamber. The states of wakefulness (W), non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) were scored non-invasively, using a previously validated technique. Both in WT and KO-ORX mice T°a strongly and significantly affected ventilatory period and minute ventilation values during NREMS and REMS; moreover, the occurrence rate of sleep apneas in NREMS was significantly reduced at T°a=20°C compared to T°a=30°C. Overall, there were no differences in respiratory regulation during sleep between WT and KO-ORX mice, except for sigh occurrence rate, which was significantly increased at T°a=20°C with respect to T°a =30°C in WT mice, but not in KO-ORX mice. These results do not support a main role for orexin peptides in the temperature-dependent modulation of respiratory regulation during sleep. However, we showed that the occurrence rate of sleep apneas critically depends on T°a, without any significant effect of orexin peptides.

Funder

University of Bologna

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3