Migration of the Drosophila primordial midgut cells requires coordination of diverse PS integrin functions

Author:

Martin-Bermudo M.D.1,Alvarez-Garcia I.1,Brown N.H.1

Affiliation:

1. Wellcome/CRC Institute and Department of Anatomy, Cambridge University, Tennis Court Road, Cambridge CB2 1QR, UK. mdmb@mole.bio.cam.ac.uk.

Abstract

Cell migration during embryogenesis involves two populations of cells: the migrating cells and the underlying cells that provide the substratum for migration. The formation of the Drosophila larval midgut involves the migration of the primordial midgut cells along a visceral mesoderm substratum. We show that integrin adhesion receptors are required in both populations of cells for normal rates of migration. In the absence of the PS integrins, the visceral mesoderm is disorganised, the primordial midgut cells do not display their normal motile appearance and their migration is delayed by 2 hours. Removing PS integrin function from the visceral mesoderm alone results in visceral mesoderm disorganization, but only causes a modest delay in migration and does not affect the appearance of the migrating cells. Removing PS integrin function from the migrating cells causes as severe a delay in migration as the complete loss of PS integrin function. The functions of PS1 and PS2 are specific in the two tissues, endoderm and mesoderm, since they cannot substitute for each other. In addition there is a partial redundancy in the function of the two PS integrins expressed in the endoderm, PS1 (alphaPS1betaPS) and PS3 (alphaPS3betaPS), since loss of just one alpha subunit in the midgut results in either a modest delay (alphaPS1) or no effect (alphaPS3). We have also examined the roles of small GTPases in promoting migration of the primordial midgut cells. We find that dominant negative (N17) versions of Rac and Cdc42 cause a very similar defect in migration as loss of integrins, while those of Rho and Ras have no effect. Thus integrins are involved in mediating migration by creating an optimal substratum for adhesion, adhering to that substratum and possibly by activating Rac and Cdc42.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3