A developmental pathway controlling outgrowth of the Xenopus tail bud

Author:

Beck C.W.1,Slack J.M.1

Affiliation:

1. Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. c.beck@bath.ac.uk

Abstract

We have developed a new assay to identify factors promoting formation and outgrowth of the tail bud. A piece of animal cap filled with the test mRNAs is grafted into the posterior region of the neural plate of a host embryo. With this assay we show that expression of a constitutively active Notch (Notch ICD) in the posterior neural plate is sufficient to produce an ectopic tail consisting of neural tube and fin. The ectopic tails express the evenskipped homologue Xhox3, a marker for the distal tail tip. Xhox3 will also induce formation of an ectopic tail in our assay. We show that an antimorphic version of Xhox3, Xhox3VP16, will prevent tail formation by Notch ICD, showing that Xhox3 is downstream of Notch signalling. An inducible version of this reagent, Xhox3VP16GR, specifically blocks tail formation when induced in tailbud stage embryos, comfirming the importance of Xhox3 for tail bud outgrowth in normal development. Grafts containing Notch ICD will only form tails if placed in the posterior part of the neural plate. However, if Xwnt3a is also present in the grafts they can form tails at any anteroposterior level. Since Xwnt3a expression is localised appropriately in the posterior at the time of tail bud formation it is likely to be responsible for restricting tail forming competence to the posterior neural plate in our assay. Combined expression of Xwnt3a and active Notch in animal cap explants is sufficient to induce Xhox3, provoke elongation and form neural tubes. Conservation of gene expression in the tail bud of other vertebrates suggests that this pathway may describe a general mechanism controlling tail outgrowth and secondary neurulation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3