A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells

Author:

Landerholm T.E.1,Dong X.R.1,Lu J.1,Belaguli N.S.1,Schwartz R.J.1,Majesky M.W.1

Affiliation:

1. Departments of Pathology and Cell Biology and The Graduate Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA.

Abstract

Coronary artery smooth muscle (SM) cells originate from proepicardial cells that migrate over the surface of the heart, undergo epithelial to mesenchymal transformation and invade the subepicardial and cardiac matrix. Prior to contact with the heart, proepicardial cells exhibit no expression of smooth muscle markers including SMalphaactin, SM22alpha, calponin, SMgammaactin or SM-myosin heavy chain detectable by RT-PCR or by immunostaining. To identify factors required for coronary smooth muscle differentiation, we excised proepicardial cells from Hamburger-Hamilton stage-17 quail embryos and examined them ex vivo. Proepicardial cells initially formed an epithelial colony that was uniformly positive for cytokeratin, an epicardial marker. Transcripts for flk-1, Nkx 2.5, GATA4 or smooth muscle markers were undetectable, indicating an absence of endothelial, myocardial or preformed smooth muscle cells. By 24 hours, cytokeratin-positive cells became SMalphaactin-positive. Moreover, serum response factor, undetectable in freshly isolated proepicardial cells, became strongly expressed in virtually all epicardial cells. By 72 hours, a subset of epicardial cells exhibited a rearrangement of cytoskeletal actin, focal adhesion formation and acquisition of a motile phenotype. Coordinately with mesenchymal transformation, calponin, SM22alpha and SMgammaactin became expressed. By 5–10 days, SM-myosin heavy chain mRNA was found, by which time nearly all cells had become mesenchymal. RT-PCR showed that large increases in serum response factor expression coincide with smooth muscle differentiation in vitro. Two different dominant-negative serum response factor constructs prevented the appearance of calponin-, SM22alpha- and SMgammaactin-positive cells. By contrast, dominant-negative serum response factor did not block mesenchymal transformation nor significantly reduce the number of cytokeratin-positive cells. These results indicate that the stepwise differentiation of coronary smooth muscle cells from proepicardial cells requires transcriptionally active serum response factor.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3