Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis

Author:

Brown D.1,Wagner D.1,Li X.1,Richardson J.A.1,Olson E.N.1

Affiliation:

1. Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235-9148, USA. eolson@hamon.swmed.edu

Abstract

Scleraxis is a basic helix-loop-helix (bHLH) transcription factor shown previously to be expressed in developing chondrogenic cell lineages during embryogenesis. To investigate its function in embryonic development, we produced scleraxis-null mice by gene targeting. Homozygous mutant embryos developed normally until the early egg cylinder stage (embryonic day 6.0), when they became growth-arrested and failed to gastrulate. Consistent with this early embryonic phenotype, scleraxis was found to be expressed throughout the embryo at the time of gastrulation before becoming restricted to chondrogenic precursor cells at embryonic day 9.5. At the time of developmental arrest, scleraxis-null embryos consisted of ectodermal and primitive endodermal cell layers, but lacked a primitive streak or recognizable mesoderm. Analysis of molecular markers of the three embryonic germ layers confirmed that scleraxis mutant embryos were unable to form mesoderm. By generating chimeric embryos, using lacZ-marked scleraxis-null and wild-type embryonic stem cells, we examined the ability of mutant cells to contribute to regions of the embryo beyond the time of lethality of homozygous mutants. Scleraxis-null cells were specifically excluded from the sclerotomal compartment of somites, which gives rise to the axial skeleton, and from developing ribs, but were able to contribute to most other regions of the embryo, including mesoderm-derived tissues. These results reveal an essential early role for scleraxis in mesoderm formation, as well as a later role in formation of somite-derived chondrogenic lineages, and suggest that scleraxis target genes mediate these processes.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3