Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene

Author:

Locascio A.1,Aniello F.1,Amoroso A.1,Manzanares M.1,Krumlauf R.1,Branno M.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Italy. maggy@alpha.szn.it.

Abstract

Hox genes play a fundamental role in the establishment of chordate body plan, especially in the anteroposterior patterning of the nervous system. Particularly interesting are the anterior groups of Hox genes (Hox1-Hox4) since their expression is coupled to the control of regional identity in the anterior regions of the nervous system, where the highest structural diversity is observed. Ascidians, among chordates, are considered a good model to investigate evolution of Hox gene, organisation, regulation and function. We report here the cloning and the expression pattern of CiHox3, a Ciona intestinalis anterior Hox gene homologous to the paralogy group 3 genes. In situ hybridization at the larva stage revealed that CiHox3 expression was restricted to the visceral ganglion of the central nervous system. The presence of a sharp posterior boundary and the absence of transcript in mesodermal tissues are distinctive features of CiHox3 expression when compared to the paralogy group 3 in other chordates. We have investigated the regulatory elements underlying CiHox3 neural-specific expression and, using transgenic analysis, we were able to isolate an 80 bp enhancer responsible of CiHox3 activation in the central nervous system (CNS). A comparative study between mouse and Ciona Hox3 promoters demonstrated that divergent mechanisms are involved in the regulation of these genes in vertebrates and ascidians.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3