Affiliation:
1. Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA.
Abstract
The Drosophila chorion genes encode the major protein components of the chorion (eggshell) and are arranged in two clusters in the genome. To meet the demand for rapid chorion synthesis, Drosophila ovary follicle cells amplify the chorion gene clusters approximately 80-fold. Amplification proceeds through repeated firing of one or more DNA replication origins located near the center of each gene cluster. Hypomorphic mutant alleles of the chiffon gene cause thin, fragile chorions and female sterility, and were found to eliminate chorion gene amplification. Null alleles of chiffon had the additional phenotypes of rough eyes and thin thoracic bristles: phenotypes often associated with disruption of normal cell cycle. The chiffon locus was cloned by chromosomal walking from the nearby cactus locus. A 6.5 kb transcript was identified and confirmed to be chiffon by sequencing of mutant alleles and by phenotypic rescue with genomic transformation constructs. The protein predicted by translation of the 5.1 kb chiffon ORF contains two domains related to the S. cerevisiae Dbf4 regulator of DNA replication origin firing and cell cycle progression: a 44 residue domain designated CDDN1 (43% identical) and a 41 residue domain designated CDDN2 (12% identical). The CDDN domains were also found in the S. pombe homolog of Dbf4, Dfp1, as well as in the proteins predicted by translation of the Aspergillus nimO gene and specific human and mouse clones. The data suggest a family of eukaryotic proteins related to Dbf4 and involved in initiation of DNA replication.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献