Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell

Author:

Gho M.1,Bellaiche Y.1,Schweisguth F.1

Affiliation:

1. Ecole Normale Superieure, ATIPE URA1857, 75005 Paris, France. mgho@wotan.ens.fr

Abstract

The bristle mechanosensory organs of the adult fly are composed of four different cells that originate from a single precursor cell, pI, via two rounds of asymmetric cell division. Here, we have examined the pattern of cell divisions in this lineage by time-lapse confocal microscopy using GFP imaging and by immunostaining analysis. pI divided within the plane of the epithelium and along the anteroposterior axis to give rise to an anterior cell, pIIb, and a posterior cell, pIIa. pIIb divided prior to pIIa to generate a small subepithelial cell and a larger daughter cell, named pIIIb. This unequal division, oriented perpendicularly to the epithelium plane, has not been described previously. pIIa divided after pIIb, within the plane of the epithelium and along the AP axis, to produce a posterior socket cell and an anterior shaft cell. Then pIIIb divided perpendicularly to the epithelium plane to generate a basal neurone and an apical sheath cell. The small subepithelial pIIb daughter cell was identified as a sense organ glial cell: it expressed glial cell missing, a selector gene for the glial fate and migrated away from the sensory cluster along extending axons. We propose that mechanosensory organ glial cells, the origin of which was until now unknown, are generated by the asymmetric division of pIIb cells. Both Numb and Prospero segregated specifically into the basal glial and neuronal cells during the pIIb and pIIIb divisions, respectively. This revised description of the sense organ lineage provides the basis for future studies on how polarity and fate are regulated in asymmetrically dividing cells.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3