Pitfalls in invertebrate proteasome assays

Author:

Götze Sandra1,Bose Aneesh2,Abele Doris2,Sokolova Inna3,Saborowski Reinhard2

Affiliation:

1. Alfred Wegener Institut for Polar and Marine Research, Germany; University of North Carolina, USA;

2. Alfred Wegener Institut for Polar and Marine Research, Germany;

3. University of North Carolina, Charlotte, USA

Abstract

Summary The ubiquitin-proteasome system controls a variety of essential intracellular processes through directed protein turnover. The invertebrate proteasome has recently gained increasing interest with respect to central physiological processes and pathways in different taxa. A pitfall in proteasome-activity assays, represented by the trypsin-like, the chymotrypsin-like, or the caspase-like site, lies in the fact that most commonly-used experimental substrates are susceptible to degradation by non-proteasomal proteolytic enzymes, which can lead to erroneous interpretation of activity data obtained. Through the use of a proteasome-specific inhibitor, epoxomicin, we could show that the shares of proteasomal and non-proteasomal activities in the degradation of a model polypeptide substrate for the chymotrypsin-like activity vary considerably between invertebrate taxa. Crustacean muscle tissue and hemocytes showed almost exclusively proteasomal activity. In yeast, approximately 90% of total proteolytic activity can be attributed to the proteasome. In contrast, proteasomal activity comprises only 20-60% of the total proteolytic activity in bivalve tissues. These results reveal that, without verification of the shares of proteasomal and non-proteasomal activities in crude extracts through the use of highly specific inhibitors, common proteasomal enzyme assays should be used and interpreted with caution.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3