Affiliation:
1. Zoophysiology, Department of Biosciences, Aarhus University, Denmark
Abstract
SummaryChill tolerance of insects is defined as the ability of insects to tolerate low temperature under circumstances not involving freezing of intra- or extracellular fluids. For many insects chill tolerance is crucial for their ability to persist in cold environments and mounting evidence indicate that chill tolerance is associated with the ability to maintain ion- and water-homeostasis, thereby ensuring muscular function and preventing chill injury at low temperature. The present study describes the relationship between muscle and hemolymph ion-homeostasis and time to regain posture following cold shock (CS, 2h at -4°C) in the chill susceptible locust, Locusta migratoria. This relationship is examined in animals with and without a prior rapid cold hardening treatment (RCH, 2h at 0°C) to investigate the physiological underpinnings of RCH. Cold shock elicited a doubling of hemolymph [K+] and this disturbance was greater in locusts pre-exposed to RCH. Recovery of ion homeostasis was, however, markedly faster in RCH treated animals which correlated well with whole organism performance as hardened individuals regained posture more than 2 minutes faster than non-hardened individuals following CS. The present study indicates that loss and recovery of muscular function is associated with resting membrane potential of excitable membranes as attested from the changes in the equilibrium potential for K+ (EK) following CS. Both hardened and non-hardened animals recovered movement once K+ homeostasis was recovered to a fixed level (EK≈ -41 mV). RCH is therefore not associated with altered sensitivity to ion disturbance but instead a faster recovery of hemolymph [K+].
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献