Phylogenetic analysis of mammalian maximal oxygen consumption during exercise

Author:

Dlugosz Elizabeth M.1,Chappell Mark A.2,Meek Thomas H.3,Szafrańska Paulina4,Zub Karol4,Konarzewski Marek5,Jones James H.6,Bicudo Eduardo7,Nespolo Roberto F.8,Careau Vincent9,Garland Theodore2

Affiliation:

1. Ben-Gurion University of the Negev, Israel;

2. University of California Riverside, USA;

3. University of Washington, USA;

4. Polish Academy of Sciences, Poland;

5. University of Bialystok, Poland;

6. Uinversity of California Davis, USA;

7. Universidade de São Paulo, Brazil;

8. Universidad Austral de Chile;

9. Deakin University, Australia

Abstract

Summary We compiled published values of mammalian maximum oxygen consumption during exercise (VO2max) and supplemented these data with new measurements of VO2max for the largest rodent (capybara), 20 species of smaller-bodied rodents, two species of weasels, and one small marsupial. Many of the new data were obtained with running-wheel respirometers instead of the treadmill systems used in most previous measurements of mammalian VO2max. We used both conventional and phylogenetically informed allometric regression models to analyze VO2max of 77 ‘species’ (including subspecies or separate populations within species) in relation to body size, phylogeny, diet, and measurement method. Both body mass and allometrically mass-corrected VO2max showed highly significant phylogenetic signal (i.e., related species tended to resemble each other). The Akaike Information Criterion corrected for sample size was used to compare 27 candidate models predicting VO2max (all of which included body mass). In addition to mass, the two best-fitting models (cumulative Akaike weight = 0.93) included dummy variables coding for three species previously shown to have high VO2max (pronghorn, horse, and a bat), and incorporated a transformation of the phylogenetic branch lengths under an Ornstein-Uhlenbeck model of residual variation (thus indicating phylogenetic signal in the residuals). We found no statistical difference between wheel- and treadmill-elicited values, and diet had no predictive ability for VO2max. Averaged across all models, the allometric scaling exponent was 0.839, with 95% confidence limits of 0.795 and 0.883, which does not provide support for a scaling exponent of 0.67, 0.75 or unity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3