Operative temperature analysis of the honey bee Apis mellifera

Author:

Stupski Stanley D.1ORCID,Schilder Rudolf J.23ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Nevada,Reno, NV 89557, USA

2. Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA

3. Department of Biology, Pennsylvania State University, University Park, PA 16801, USA

Abstract

ABSTRACT A key challenge for linking experiments of organisms performed in a laboratory environment to their performance in more complex environments is to determine thermal differences between a laboratory and the energetically complex terrestrial ecosystem. Studies performed in the laboratory do not account for many factors that contribute to the realized temperature of an organism in its natural environment. This can lead to modelling approaches that use experimentally derived data to erroneously link the air temperature in a laboratory to air temperatures in energetically heterogenous ecosystems. Traditional solutions to this classic problem assume that animals in an isotropic, isothermal chamber behave either as pure heterothermic ectotherms (body temperature=chamber temperature) or homeothermic endotherms (body temperature is entirely independent of chamber temperature). This approach may not be appropriate for endothermic insects which exist as an intermediate between strongly thermoregulating endotherms and purely thermoconforming species. Here, we use a heat budget modelling approach for the honey bee Apis mellifera to demonstrate that the unique physiology of endothermic insects may challenge many assumptions of traditional biophysical modelling approaches. We then demonstrate under modelled field-realistic scenarios that an experiment performed in a laboratory has the potential to both overestimate and underestimate the temperature of foraging bees when only air temperature is considered.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3