The synapsin domain E accelerates the exoendocytotic cycle of synaptic vesicles in cerebellar Purkinje cells

Author:

Fassio Anna1,Merlo Daniela1,Mapelli Jonathan2,Menegon Andrea3,Corradi Anna1,Mete Maurizio1,Zappettini Simona1,Bonanno Giambattista14,Valtorta Flavia3,D'Angelo Egidio2,Benfenati Fabio15

Affiliation:

1. Center of Neuroscience and Neuroengineering, Department of Experimental Medicine, University of Genoa, Italy

2. Department of Cellular and Molecular Physiology and Pharmacology, University of Pavia, Italy

3. San Raffaele Scientific Institute, `Vita Salute' University and I.I.T. Unit of Molecular Neuroscience, Milan, Italy

4. Center of Excellence for Biomedical Research, University of Genoa, Italy

5. Unit of Neuroscience, The Italian Institute of Technology, Morego Central Laboratories, Genoa, Italy

Abstract

Synapsins are synaptic-vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release and excitability of neuronal networks. Mutation of synapsin genes in mouse and human causes epilepsy. To understand the role of the highly conserved synapsin domain E in the dynamics of release from mammalian inhibitory neurons, we generated mice that selectively overexpress the most conserved part of this domain in cerebellar Purkinje cells. At Purkinje-cell–nuclear-neuron synapses, transgenic mice were more resistant to depression induced by short or prolonged high-frequency stimulations. The increased synaptic performance was accompanied by accelerated release kinetics and shorter synaptic delay. Despite a marked decrease in the total number of synaptic vesicles, vesicles at the active zone were preserved or slightly increased. The data indicate that synapsin domain E increases synaptic efficiency by accelerating both the kinetics of exocytosis and the rate of synaptic vesicle cycling and decreasing depression at the inhibitory Purkinje-cell–nuclear-neuron synapse. These effects may increase the sensitivity of postsynaptic neurons to inhibition and thereby contribute to the inhibitory control of network activity.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3