Characterization ofPax3-expressing cells from adult blood vessels

Author:

Goupille Olivier1,Pallafacchina Giorgia2,Relaix Frédéric3,Conway Simon J.4,Cumano Ana5,Robert Benoit1,Montarras Didier2,Buckingham Margaret2

Affiliation:

1. Molecular Genetics of Morphogenesis Unit, Department of Developmental Biology, URA CNRS 2578, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France

2. Molecular Genetics of Development Unit, Department of Developmental Biology, URA CNRS 2578, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France

3. UMR-S 787, INSERM, UPMC-Paris VI, Institut de Myologie, Faculté de Médecine Pitié-Salpétrière 105 bd de l'Hôpital, 75634 Paris, France

4. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA

5. Lymphocyte Development Unit, Department of Immunology, INSERM U668, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France

Abstract

We report expression of Pax3, an important regulator of skeletal muscle stem cell behaviour, in the brachial and femoral arteries of adult mice. In these contractile arteries of the limb, but not in the elastic arteries of the trunk, bands of GFP-positive cells were observed in Pax3GFP/+ mice. Histological and biochemical examination of the vessels, together with clonal analysis after purification of Pax3–GFP-positive cells by flow cytometry, established their vascular smooth muscle identity. These blood-vessel-derived cells do not respond to inducers of other mesodermal cell types, such as bone, however, they can contribute to muscle fibre formation when co-cultured with skeletal muscle cells. This myogenic conversion depends on the expression of Pax3, but is rare and non-cell autonomous as it requires cell fusion. Myocardin, which promotes acquisition of a mature smooth muscle phenotype in these Pax3–GFP-positive cells, antagonises their potential for skeletal muscle differentiation. Genetic manipulation shows that myocardin is, however, positively regulated by Pax3, unlike genes for other myocardin-related factors, MRTFA, MRTFB or SRF. Expression of Pax3 overlaps with that reported for Msx2, which is required for smooth muscle differentiation of blood vessel-derived multipotent mesoangioblasts. These observations are discussed with respect to the origin and function of Pax3-expressing cells in blood vessels, and more general questions of cell fate determination and adult cell plasticity and reprogramming.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3