Cloning and regulation of expression of the Na+–Cl––taurine transporter in gill cells of freshwater Japanese eels

Author:

Chow S. C.1,Ching L. Y.1,Wong A. M. F.1,Wong Chris K. C.1

Affiliation:

1. Department of Biology, Hong Kong Baptist University, Hong Kong, PRC

Abstract

SUMMARY Our previous studies have demonstrated the hypertonic-induced expression of osmotic stress transcription factor and the regulatory volume increase (RVI)response in gill cells isolated from freshwater eels. In this study, we aimed to clone one of the organic osmolyte transporters, the Na+–Cl––taurine transporter (TauT),and to characterize its expression in anisosmotic conditions, using both in vivo and in vitro approaches. A cDNA clone encoding TauT was isolated from gill tissues of Japanese eels, Anguilla japonica. The deduced amino acid sequence shows 88–90% identity to other reported piscine TauT sequences. Our data indicated that TauT mRNA was detectable in both freshwater and seawater fish gills. The expression level of TauT mRNA increased in gills of seawater-acclimating fish. A high abundance of TauT protein was found to be localized in seawater gill chloride cells. Using primary gill cell culture, expression of the gene was induced when the ambient osmolarity was raised from 320 to 500 mosmol l–1. Hypertonic treatment of the culture caused an increase of F-actin distribution in the cell periphery. Treatment of the cells with colchicine or cytochalasin D significantly reduced TauT transcript level following hypertonic exposure. The inhibition of myosin light chain (MLC) kinase by ML-7 had a significant additive effect on hypertonic-induced TauT expression. Collectively, the data of this study reveal, for the first time, the regulation of TauT expression in gill cells of euryhaline fish. We have demonstrated the involvement of ionic strength, the cytoskeleton and MLC kinase in the regulation of TauT expression. The results shed light on the osmosensing and hyperosmotic adaption in fish gills.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3