Echo-acoustic scanning with noseleaf and ears in phyllostomid bats

Author:

Kugler Kathrin1,Wiegrebe Lutz1ORCID

Affiliation:

1. Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany

Abstract

ABSTRACT The mammalian visual system is highly directional and mammals typically employ rapid eye movements to scan their environment. Both sound emission and hearing in echolocating bats are directional but not much is known about how bats use ear movements and possibly movements of the sound-emitting structures to scan space. Here, we investigated in a tightly controlled behavioural experiment how Phyllostomus discolor bats employ their echolocation system while being moved through differently structured environments: we monitored and reconstructed both a close-up of the facial structures in 3D, including the motile noseleaf and outer ears, and the sonar-beam of the bat while it was moved along reflectors. Despite the simple linear movement of the bats in the setup, the bats pointed their beam quite variably in azimuth with a standard deviation of about ±20 deg. This variation arises from yaw-type head rotations. Video analyses show that the bat's noseleaf twitches with every echolocation call. Second, we show that the bat's ears are raised to a rather stereotypical head-centred position with every echolocation call. Surprisingly, P. discolor can adjust the timing and the magnitude of these ear movements to the distance of the reflectors with millisecond precision. Our findings reveal echolocation-specific specialisations as well as general principles of scanning and stabilisation of a directional remote sense. The call-correlated movements of the facial structures may lead to a higher directionality of the echolocation system and may enable the bats to adjust their echo-acoustic gaze to dynamic environments.

Funder

Deutsche Forschungsgemeinschaft

Andrea von Braun Stiftung

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3