Mechanics of neutrophil phagocytosis: experiments and quantitative models

Author:

Herant Marc1,Heinrich Volkmar2,Dembo Micah1

Affiliation:

1. Biomedical Engineering Department, Boston University, 44 Cummington Street, Boston, MA 02215, USA

2. Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA

Abstract

To quantitatively characterize the mechanical processes that drive phagocytosis, we observed the FcγR-driven engulfment of antibody-coated beads of diameters 3 μm to 11 μm by initially spherical neutrophils. In particular, the time course of cell morphology, of bead motion and of cortical tension were determined. Here, we introduce a number of mechanistic models for phagocytosis and test their validity by comparing the experimental data with finite element computations for multiple bead sizes. We find that the optimal models involve two key mechanical interactions: a repulsion or pressure between cytoskeleton and free membrane that drives protrusion, and an attraction between cytoskeleton and membrane newly adherent to the bead that flattens the cell into a thin lamella. Other models such as cytoskeletal expansion or swelling appear to be ruled out as main drivers of phagocytosis because of the characteristics of bead motion during engulfment. We finally show that the protrusive force necessary for the engulfment of large beads points towards storage of strain energy in the cytoskeleton over a large distance from the leading edge (∼0.5 μm), and that the flattening force can plausibly be generated by the known concentrations of unconventional myosins at the leading edge.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3