A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants

Author:

Groves Norman R.1,McKenna Joseph F.2ORCID,Evans David E.2,Graumann Katja2,Meier Iris13ORCID

Affiliation:

1. Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA

2. Department of Biological and Medical Sciences, Oxford Brookes, Oxford, OX3 0BP, UK

3. Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA

Abstract

Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism is transport-factor mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore if this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the NE of leaf epidermal cells. Airyscan sub-diffraction limited confocal microscopy showed that it displays localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment and both monopartite or bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3