The incubation environment does not explain significant variation in heart rate plasticity among avian embryos

Author:

Cones Alexandra G.1ORCID,Schneider Eve R.1ORCID,Westneat David F.1ORCID

Affiliation:

1. University of Kentucky Department of Biology , , 101 Thomas Hunt Morgan Building, Lexington, KY 40506 , USA

Abstract

ABSTRACT The conditions an organism experiences during development can modify how they plastically respond to short-term changes in their environment later in life. This can be adaptive because the optimal average trait value and the optimal plastic change in trait value in response to the environment may differ across different environments. For example, early developmental temperatures can adaptively modify how reptiles, fish and invertebrates metabolically respond to temperature. However, whether individuals within populations respond differently (a prerequisite to adaptive evolution), and whether this occurs in birds, which are only ectothermic for part of their life cycle, is not known. We experimentally tested these possibilities by artificially incubating the embryos of Pekin ducks (Anas platyrhynchos domesticus) at constant or variable temperatures. We measured their consequent heart rate reaction norms to short-term changes in egg temperature and tracked their growth. Contrary to expectations, the early thermal environment did not modify heart rate reaction norms, but regardless, these reaction norms differed among individuals. Embryos with higher average heart rates were smaller upon hatching, but heart rate reaction norms did not predict subsequent growth. Our data also suggests that the thermal environment may affect both the variance in heart rate reaction norms and their covariance with growth. Thus, individual avian embryos can vary in their plasticity to temperature, and in contrast to fully ectothermic taxa, the early thermal environment does not explain this variance. Because among-individual variation is one precondition to adaptive evolution, the factors that do contribute to such variability may be important.

Funder

University of Kentucky

Alfred P. Sloan Research Fellowship

Publisher

The Company of Biologists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECR Spotlight – Alexandra Cones;Journal of Experimental Biology;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3