Biophysics of underwater hearing in anuran amphibians

Author:

Hetherington T. E.,Lombard R. E.

Abstract

A standing wave tube apparatus was used to determine the biophysical basis of underwater hearing sensitivity in 3 species of Rana and in Xenopus laevis. A speaker inside the base of a vertical, water-filled 3 m steel pipe produced standing waves. Pressure and particle motion were measured with a hydrophone and geophone respectively and were spatially 90 degrees out of phase along the length of the tube. Microphonic responses were recorded from the inner ear of frogs lowered through pressure and particle motion maxima and minima. The air-filled lungs of whole frogs produced distortions of the sound field. Preparations of heads with only an air-filled middle ear produced little distortion and showed clear pressure tracking at sound intensities 10-20 dB above hearing thresholds from 200-3000 Hz. Filling the middle ear with water decreased or abolished microphonic responses. Severing the stapes reduced responses except at certain frequencies below about 1000 Hz which varied with body size and likely represent resonant frequencies of the middle ear cavity. We conclude that the frog species examined respond to underwater sound pressure from about 200-3000 Hz with the middle ear cavity responsible for pressure transduction.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3