Spindle birefringence of isolated mitotic apparatus analysed by treatments with cold, pressure, and diluted isolation medium

Author:

Forer A.,Zimmerman A.M.

Abstract

Mitotic apparatus (MA) were isolated from sea-urchin zygotes using glycerol-dimethyl-sulphoxide. Cold treatment had no effect on MA birefringence when MA were in isolation medium, but caused a 10–15% reduction of MA birefringence when MA were in quarter-strength isolation medium. Pressure treatment also caused a reduction in MA birefringence, but the cold and pressure treatments were not additive, suggesting that both treatments affected the same MA component. MA were not stable in quarter-strength isolation medium, and birefringence gradually decayed, with a half-life of about 40 h. Electron microscopy after cold treatment, or after decay of 55% of the MA birefringence showed abundant, normal-looking microtubules, suggesting that alterations in non-microtubule components cause the reductions in birefringence. Addition of EGTA eliminates the effect of cold treatment, suggesting that Ca2+ has a role in maintenance of spindle structure. We discuss possible reasons why isolated MA do not respond to cold treatment like MA in vivo.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3