β-Catenin 1 and β-catenin 2 play similar and distinct roles in left-right asymmetric development of zebrafish embryos

Author:

Zhang Min1,Zhang Junfeng1,Lin Sheng-Cai2,Meng Anming13

Affiliation:

1. State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

2. College of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.

3. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

β-Catenin-mediated canonical Wnt signaling has been found to be required for left-right (LR) asymmetric development. However, the implication of endogenous β-catenin in LR development has not been demonstrated by loss-of-function studies. In zebrafish embryos, two β-catenin genes, β-catenin 1 (ctnnb1) and β-catenin 2 (ctnnb2) are maternally expressed and their zygotic expression occurs in almost all types of tissues, including Kupffer’s vesicle (KV), an essential organ that initiates LR development in teleost fish. We demonstrate here that morpholino-mediated knockdown of ctnnb1, ctnnb2, or both, in the whole embryo or specifically in dorsal forerunner cells (DFCs) interrupts normal asymmetry of the heart, liver and pancreas. Global knockdown of ctnnb2 destroys the midline physical and molecular barrier, while global knockdown of ctnnb1 impairs the formation of the midline molecular barrier. Depletion of either gene or both in DFCs/KV leads to poor KV cell proliferation, abnormal cilia formation and disordered KV fluid flow with downregulation of ntl and tbx16 expression. ctnnb1 and ctnnb2 in DFCs/KV differentially regulate the expression of charon, a Nodal antagonist, and spaw, a key Nodal gene for laterality development in zebrafish. Loss of ctnnb1 in DFCs/KV inhibits the expression of charon around KV and of spaw in the posterior lateral plate mesoderm, while ctnnb2 knockdown results in loss of spaw expression in the anterior lateral plate mesoderm with little alteration of charon expression. Taken together, our findings suggest that ctnnb1 and ctnnb2 regulate multiple processes of laterality development in zebrafish embryos through similar and distinct mechanisms.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3