Affiliation:
1. Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA, 37205
Abstract
The wings of insects are composed of membranes supported by interconnected veins. Within these veins are epithelial cells, nerves and tracheae, and their maintenance requires the flow of hemolymph. For this purpose, insects employ accessory pulsatile organs (auxiliary hearts) that circulate hemolymph throughout the wings. Here, we used correlative approaches to determine the functional mechanics of hemolymph circulation in the wings of the malaria mosquito, Anopheles gambiae. Examination of sectioned tissues and intravital videos showed that the wing heart is located underneath the scutellum and is separate from the dorsal vessel. It is composed of a single pulsatile diaphragm (indicating that it is unpaired) that contracts at 3 Hz and circulates hemolymph throughout both wings. The wing heart contracts significantly faster than the dorsal vessel, and there is no correlation between the contractions of these two pulsatile organs. The wing heart functions by aspirating hemolymph out of the posterior wing veins, which forces hemolymph into the wings via anterior veins. By tracking the movement of fluorescent microspheres, we show that the flow diameter of the wing circulatory circuit is less than 1 µm, and we present a spatial map detailing the flow of hemolymph across all the wing veins, including the costa, sub-costa, ambient costa, radius, media, cubitus anterior, anal vein, and crossveins. We also quantified the movement of hemolymph within the radius and within the ambient costa, and show that hemolymph velocity and maximum acceleration are higher when hemolymph is exiting the wing.
Funder
National Science Foundation
Arnold and Mabel Beckman Foundation
Vanderbilt University Littlejohn Fellowship Program
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献