Effects of anoxia on ATP, water, ion and pH balance in an insect (Locusta migratoria)

Author:

Ravn Mathias V.1,Campbell Jacob B.2ORCID,Gerber Lucie13,Harrison Jon F.2,Overgaard Johannes1ORCID

Affiliation:

1. Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark

2. School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

3. Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, A1C 5S7, Canada

Abstract

When exposed to anoxia insects rapidly go into a hypometabolic coma from which they can recover when exposed to normoxia again. However, prolonged anoxic bouts eventually lead to death in most insects, although some species are surprisingly tolerant. Anoxia challenges ATP, ion, pH and water homeostasis, but it is not clear how fast and to what degree each of these parameters are disrupted during anoxia, nor how quickly they recover. Further, it has not been investigated which disruptions are the primary source of the tissue damage that ultimately causes death. Here we show, in the migratory locust (Locusta migratoria), that prolonged anoxic exposures are associated with increased recovery time, decreased survival, rapidly disrupted ATP and pH homeostasis and a more slowly disruption of ion ([K+] and [Na+] ) and water balance. Locusts could not fully recover after 4 hours of anoxia at 30 °C, and at this point hemolymph [K+] and [Na+] was elevated 5-fold and decreased 2-fold, respectively, muscle [ATP] was decreased to ≤3% of normoxic values, hemolymph pH had dropped 0.8 units from 7.3 to 6.5, and hemolymph water content was halved. These physiological changes are associated with marked tissue damage in vivo and we show that the isolated and combined effects of hyperkalemia, acidosis and anoxia can all cause muscle tissue damage in vitro to equally large degrees. When locusts were returned to normoxia after a moderate (2 hour) exposure of anoxia, ATP recovered rapidly (15 min) and this was quickly followed by recovery of ion balance (30 min), while pH recovery took 2-24 hours. Recovery of [K+] and [Na+] coincided with the animals exiting the comatose state, but recovery to an upright position took∼90 min and was not related to any of the physiological parameters examined.

Funder

Natur og Univers, Det Frie Forskningsr?d

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid cold hardening modifies ion regulation to delay anoxia-induced spreading depolarization in the CNS of the locust;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2023-11

2. A cold and quiet brain: mechanisms of insect CNS arrest at low temperatures;Current Opinion in Insect Science;2023-08

3. Plate Section (PDF Only);Insect Diapause;2022-02-03

4. Subject Index;Insect Diapause;2022-02-03

5. Species Index;Insect Diapause;2022-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3