Dragonflies use underdamped pursuit to chase conspecifics

Author:

Lohmann Amanda C.12ORCID,Corcoran Aaron J.1ORCID,Hedrick Tyson L.1ORCID

Affiliation:

1. Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA

2. Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA

Abstract

ABSTRACT Pursuit is a common behavior exhibited by animals chasing prey, competitors and potential mates. Because of their speed and maneuverability, dragonflies are frequently studied as a model system for biological pursuit. Most quantitative studies have focused on prey pursuits in captive environments. To determine whether a different pursuit strategy is used when chasing conspecifics of nearly equal speed and agility, we recorded 3D flight trajectories from nine territorial chases between male Erythemis simplicicollis dragonflies in natural field conditions. During chases, dragonflies used an interception strategy with an unusually high-magnitude gain (k=−10.03 s−1 horizontal; −8.86 s−1 vertical) and short time delay (τ=50 ms). The product kτ determines how aggressively a pursuer corrects course to achieve interception. Previous studies of prey pursuit have found kτ values close to −1/e (−0.37), the time-optimal value for achieving pursuit without overshooting. However, we found that dragonflies chasing conspecifics use more negative kτ (−0.50 horizontal; −0.44 vertical), resulting in pursuits with a high degree of overshooting (i.e. moving past the target and alternating position from side to side). We confirmed via simulation that the observed gain and delay produce overshooting. We propose that overshooting is an adaptive feature of conspecific chases that can be achieved with only slight modification of the strategy used for intercepting prey. Overshooting might help avoid potentially damaging collisions while exhibiting the pursuing animal's flight performance and competitive ability. Repeated close approaches might also evoke evasive responses from the other dragonfly, effectively herding the competitor out of the territory.

Funder

University of North Carolina at Chapel Hill

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3