Affiliation:
1. College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
Abstract
Ambient temperature associated stress can affect the normal physiological functions in ectotherms. To assess the effects of cold or heat stress on amphibians, the giant spiny frogs, Quasipaa spinosa, were acclimated at 22 °C followed by being treated at 5 °C or 30 °C for 0, 3, 6, 12, 24 and 48 h, respectively. Histological alterations, apoptotic index, mitochondrial reactive oxygen species (ROS) generation, antioxidant activity indices and stress-response gene expressions in frog livers were subsequently determined. Results showed that many fat droplets appeared after 12 h of heat stress. Percentage of melanomacrophages centres significantly changed during 48 h at both stress conditions. Furthermore, the mitochondrial ROS levels were elevated in a time-dependent manner up to 6 h and 12 h in the cold and heat stress groups, respectively. The activities of superoxide dismutase, glutathione peroxidase and catalase were successively increased along the cold or heat exposure, and most of their gene expression levels showed similar changes at both stress conditions. Most tested HSP genes were sensitive to temperature exposure, and the expression profiles of most apoptosis-related genes was significantly up-regulated at 3 and 48 h under cold and heat stress, respectively. Apoptotic index at 48 h under cold stress was significantly higher than that under heat stress. Notably, lipid droplets, HSP30, HSP70 and HSP110 might be suitable bioindicators of heat stress. The results of these alterations at physiological, biochemical and molecular levels might contribute to a better understanding of the stress response of Q. spinosa and even amphibians under thermal stresses.
Funder
Science and Technology Department of Zhejiang Province
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献