Affiliation:
1. Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
Abstract
Thermal effects on mitochondrial efficiency and ATP production can influence whole-animal thermal tolerance and performance. Thus, organisms may have the capacity to alter mitochondrial processes through acclimation or adaptation to mitigate these effects. One possible mechanism is through the action of uncoupling proteins (UCPs) which can decrease the proton motive force independent of the production of ATP. To test this hypothesis, we examined the mRNA expression patterns of UCP isoforms and characterized the effects of thermal acclimation and putative local thermal adaptation on mitochondrial capacity, proton leak, and P/O ratios in two subspecies of Atlantic killifish (Fundulus heteroclitus). Ucp1 was the dominant isoform in liver and was more highly expressed in northern killifish. We found that cold acclimation increased mitochondrial capacity (state III and maximum substrate oxidation capacity), state II membrane potential, proton leak, and P/O ratios in northern, but not southern killifish liver mitochondria. Palmitate-induced mitochondrial uncoupling was detected in northern, but not southern, killifish liver mitochondria, consistent with the differences in mRNA expression between the subspecies. Taken together, our data suggest that mitochondrial function is more plastic in response to thermal acclimation in northern killifish than southern killifish and that UCP1 may play a role in regulating the proton motive force in northern, but not southern killifish in response to thermal acclimation. These data demonstrate the potential for adaptive variation in mitochondrial plasticity in response to cold.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献