Involvement of the liver-gut peripheral neural axis in nonalcoholic fatty liver disease pathologies via hepatic HTR2A

Author:

Owaki Takashi1,Kamimura Kenya12ORCID,Ko Masayoshi1,Nagayama Itsuo1,Nagoya Takuro1,Shibata Osamu1,Oda Chiyumi1,Morita Shinichi1,Kimura Atsushi1,Sato Takeki1,Setsu Toru1,Sakamaki Akira1,Kamimura Hiroteru1,Yokoo Takeshi1,Terai Shuji1

Affiliation:

1. Graduate School of Medical and Dental Sciences, Niigata University 1 Division of Gastroenterology and Hepatology , , Niigata 951-8510 , Japan

2. Niigata University School of Medicine 2 Department of General Medicine , , Niigata 951-8510 , Japan

Abstract

ABSTRACT Serotonin (5-HT) is one of the key bioamines of nonalcoholic fatty liver disease (NAFLD). Its mechanism of action in autonomic neural signal pathways remains unexplained; hence, we evaluated the involvement of 5-HT and related signaling pathways via autonomic nerves in NAFLD. Diet-induced NAFLD animal models were developed using wild-type and melanocortin 4 receptor (MC4R) knockout (MC4RKO) mice, and the effects of the autonomic neural axis on NAFLD physiology, 5-HT and its receptors (HTRs), and lipid metabolism-related genes were assessed by applying hepatic nerve blockade. Hepatic neural blockade retarded the progression of NAFLD by reducing 5-HT in the small intestine, hepatic HTR2A and hepatic lipogenic gene expression, and treatment with an HTR2A antagonist reproduced these effects. The effects were milder in MC4RKO mice, and brain 5-HT and HTR2C expression did not correlate with peripheral neural blockade. Our study demonstrates that the autonomic liver-gut neural axis is involved in the etiology of diet-induced NAFLD and that 5-HT and HTR2A are key factors, implying that the modulation of the axis and use of HTR2A antagonists are potentially novel therapeutic strategies for NAFLD treatment. This article has an associated First Person interview with the first author of the paper.

Funder

Japan Society for the Promotion of Science

Niigata University

Taiju Life Social Welfare Foundation

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3