Inhibition of protein kinase D by CID755673 promotes maintenance of the pluripotency of embryonic stem cells

Author:

Zhu Zhenhua1,Zhang Yan1,Wang Xiaoxiao2,Wang Xiaohu1,Ye Shou-Dong13ORCID

Affiliation:

1. Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, P.R China

2. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China

3. Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R China

Abstract

The identification of novel mechanisms to maintain embryonic stem cell (ESC) pluripotency is of crucial importance, because the currently used culture conditions are not suitable for ESCs from all species. In this study, we showed that the protein kinase D (PKD) inhibitor CID755673 (CID) is able to maintain the undifferentiated state of mouse ESCs in combination with the mitogen-activated protein kinase kinase (MEK) inhibitor. The expression levels of PKD members, including PKD1, PKD2 and PKD3, were low in mouse ESCs but significantly increased under differentiation conditions. Therefore, depletion of three PKD genes was able to phenocopy PKD inhibition. Mechanistically, PKD inhibition activated PI3K/AKT signaling by increasing AKT phosphorylation level, and the addition of a PI3K/AKT signaling pathway inhibitor partially reduced the cellular response to PKD inhibition. Importantly, the self-renewal-promoting effect of CID was maintained in human ESCs. Simultaneous knockdown of the three human PKD isoforms enabled short-term self-renewal in human ESCs, whereas PI3K/AKT signaling inhibition eliminated this self-renewal ability downstream of the PKD inhibitor. These findings expand our understanding of the gene regulatory network of ESC pluripotency.

Funder

Natural Science Foundation of Anhui Province

Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3