How motor proteins influence microtubule polymerization dynamics

Author:

Hunter A.W.1,Wordeman L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195 USA.

Abstract

The interplay between microtubules and microtubule-based motors is fundamental to basic aspects of cellular function, such as the intracellular transport of organelles and alterations in cellular morphology during cell locomotion and division. Motor proteins are unique in that they couple nucleotide hydrolysis to force production that can do work. The force transduction by proteins belonging to the kinesin and dynein superfamilies has been thought only to power movement of these motors along the surface of microtubules; however, a growing body of evidence, both genetic and biochemical, suggests that motors can also directly influence the polymerization dynamics of microtubules. For example, at the vertebrate kinetochore, motors interact directly with microtubule ends and modulate polymerization dynamics to orchestrate chromosome movements during mitosis. Although a role for motors in regulating microtubule length has been established, the mechanisms used by motors to promote microtubule growth or shrinkage are unclear, as is an understanding of why cells might choose motors to control dynamics rather than a variety of non-motor proteins known to affect microtubule stability. Elucidation of the exact mechanisms by which motors alter the exchange of tubulin subunits at microtubule ends in vitro may shed light on how microtubule stability is regulated to produce the array of dynamic behavior seen in cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3