Transient suppression of cortactin ectopically induces large telencephalic neurons towards a GABAergic phenotype

Author:

Cheng Y.1,Leung S.1,Mangoura D.1

Affiliation:

1. Department of Pediatrics, Committee on Neurobiology and Committee on Cell Physiology, Chicago, IL 60637, USA.

Abstract

Excitatory and inhibitory neuronal cell fates require specific expression of both neurotransmitter and morphological phenotypes. The role of the F-actin cytoskeleton in morphological phenotypes has been well documented, but its role in neurotransmitter phenotype expression remains unknown. Here we present evidence that the F-actin binding protein cortactin participates in determining both aspects of cell fate in large telencephalic neurons. We show that the expression of cortactin was upregulated early in development just prior to appearance of GABAergic neurons in the chick telencephalon at embryonic day 6. This program was faithfully maintained in primary neuronal cultures derived from E6 telencephalon, where immature neurons differentiate either to large pyramidal and large stellate excitatory neurons or to small inhibitory GABAergic neurons. Immunostaining revealed that cortactin was enriched in areas of membrane budding, growth cones, and in the cell cortex of immature neurons. With differentiation, intense punctate staining was also observed in an extraction-resistant cytosolic compartment of the soma and processes. More importantly, suppression of cortactin by inhibition of cortactin mRNA translation with antisense oligonucleotides caused permanent phenotypic changes. Specifically, a transient suppression of cortactin was achieved in immature neurons with a single exposure to antisense oligonucleotides. This inhibition first induced both the expression of mRNA and the enzymatic activity of GAD significantly earlier than in control neurons. Second, cortactin-suppressed large projectional neurons exhibited significantly shorter processes and growth cones with protrusive filopodia and an enlarged lamellipodia veil. Most importantly, this remodeling of neuritic outgrowth in projectional somata was accompanied by the ectopic induction of GABA (*-aminobutyric acid) expression. Considering this data altogether, it appears that cortactin may function to suppress concurrently several parameters of the GABAergic program in large developing neurons.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3