Contraction of collagen matrices mediated by alpha2beta1A and alpha(v)beta3 integrins

Author:

Cooke M.E.1,Sakai T.1,Mosher D.F.1

Affiliation:

1. Department of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.

Abstract

The (beta)1-null fibroblastic cell line GD25 and its derivatives were studied to gain an understanding of the roles of (beta)1 and (beta)3 integrins in the initial (1-hour) contraction of collagen gels. Stable transfectants of GD25 cells expressing the (beta)1A splice variant of (beta)1 ((beta)1A-GD25) did not express (alpha)2(beta)1A and did not adhere to collagen. After transfection of (alpha)2 into (beta)1A-GD25 cells, the (alpha)2(beta)1A-GD25 transfectants contracted collagen gels in the presence of serum, whereas (beta)1A-GD25 cells did not. The GD25 parental cells, however, also contracted collagen gels. Collagen gel contraction by GD25 cells was blocked by antibodies to (alpha)v(beta)3 or a RGD-containing peptide, indicating that (alpha)v(beta)3 is the integrin responsible for mediation of contraction by GD25 cells. Collagen gel contraction by (alpha)2(beta)1A-GD25 cells was not inhibited by antibodies to (alpha)v(beta)3 or RGD-containing peptide, but was inhibited by anti-(alpha)2 antibody. Flow cytometry demonstrated negligible expression of (alpha)v(beta)3 by (beta)1A-GD25 and (alpha)2(beta)1A-GD25 cells when compared to GD25 cells. Platelet derived growth factor (PDGF) and sphingosine-1-phosphate (S1P) enabled gel contraction by (alpha)2(beta)1A-GD25 and GD25 cells, respectively, in the absence of serum. PDGF-stimulated contraction by (alpha)2(beta)1A-GD25 cells was attenuated in the presence of inhibitors of phosphatidylinositol-3-kinase whereas such inhibitors had no effect on S1P-stimulated contraction by GD25 cells. These experiments using the (beta)1-null GD25 cells and (beta)1A and (alpha)2(beta)1A transfectants demonstrate that (alpha)2(beta)1A and (alpha)v(beta)3 independently mediate collagen gel contraction and are regulated by different serum factors and signaling pathways.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3