Reversible programming of pluripotent cell differentiation

Author:

Lake J.1,Rathjen J.1,Remiszewski J.1,Rathjen P.D.1

Affiliation:

1. Department of Biochemistry, University of Adelaide, Adelaide 5005, Australia.

Abstract

We have undertaken an in vitro differentiation analysis of two related, interconvertible, pluripotent cell populations, ES and early primitive ectoderm-like (EPL) cells, which are most similar in morphology, gene expression, cytokine responsiveness and differentiation potential in vivo to ICM and early primitive ectoderm, respectively. Pluripotent cells were differentiated in vitro as aggregates (embryoid bodies) and the appearance and abundance of cell lineages were assessed by morphology and gene expression. Differentiation in EPL cell embryoid bodies recapitulated normal developmental progression in vivo, but was advanced in comparison to ES cell embryoid bodies, with the rapid establishment of late primitive ectoderm specific gene expression, and subsequent loss of pluripotent cell markers. Nascent mesoderm was formed earlier and more extensively in EPL cell embryoid bodies, and resulted in the appearance of terminally differentiated mesodermal cell types prior to and at higher levels than in ES cell embryoid bodies. Nascent mesoderm in EPL cell embryoid bodies was not specified but could be programmed to alternative fates by the addition of exogenous factors. EPL cells remained competent to form primitive endoderm even though this is not the normal fate of primitive ectoderm in vivo. The establishment of primitive ectoderm-like gene expression and inability to participate in embryogenesis following blastocyst injection is therefore not directly associated with restriction in the ability to form extra-embryonic lineages. However, the EPL cell embryoid body environment did not support differentiation of primitive endoderm to visceral endoderm, indicating the lack of an inductive signal for visceral endoderm formation deduced to originate from the pluripotent cells. Similarly, the inability of EPL cells to form neurons when differentiated as embryoid bodies was attributable to perturbation of the differentiation environment and loss of inductive signals rather than a restricted differentiation potential. Reversion of EPL cells to ES cells was accompanied by restoration of ES cell-like differentiation potential. These results demonstrate the ability of pluripotent cells to adopt developmentally distinct, stable cell states with altered differentiation potentials.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3