Dose-dependent linkage, assembly inhibition and disassembly of vimentin and cytokeratin 5/14 filaments through plectin's intermediate filament-binding domain

Author:

Steinbock F.A.1,Nikolic B.1,Coulombe P.A.1,Fuchs E.1,Traub P.1,Wiche G.1

Affiliation:

1. Institute of Biochemistry, University of Vienna, Vienna Biocenter, Austria.

Abstract

Plectin, the largest and most versatile member of the cytolinker/plakin family of proteins characterized to date, has a tripartite structure comprising a central 200 nm-long (α)-helical rod domain flanked by large globular domains. The C-terminal domain comprises a short tail region preceded by six highly conserved repeats (each 28–39 kDa), one of which (repeat 5) contains plectin's intermediate filament (IF)-binding site. We used recombinant and native proteins to assess the effects of plectin repeat 5-binding to IF proteins of different types. Quantitative Eu(3+)-based overlay assays showed that plectin's repeat 5 domain bound to type III IF proteins (vimentin) with preference over type I and II cytokeratins 5 and 14. The ability of both types of IF proteins to self-assemble into filaments in vitro was impaired by plectin's repeat 5 domain in a concentration-dependent manner, as revealed by negative staining and rotary shadowing electron microscopy. This effect was much more pronounced in the case of vimentin compared to cytokeratins 5/14. Preassembled filaments of both types became more and more crosslinked upon incubation with increasing concentrations of plectin repeat 5. However, at high proportions of plectin to IF proteins, disassembly of filaments occurred. Again, vimentin filaments proved considerably more sensitive towards disassembly than those composed of cytokeratins 5 and 14. In general, IFs formed from recombinant proteins were found to be slightly more responsive towards plectin influences than their native counterparts. A dose-dependent plectin-inflicted collapse and putative disruption of IFs was also observed in vivo after ectopic expression of vimentin and plectin's repeat 5 domain in cotransfected vimentin-deficient SW13 (vim(-)) cells. Our results suggest an involvement of plectin not only in crosslinking and stabilization of cytoskeletal IF networks, but also in regulation of their dynamics.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3