XCS-1, a maternally expressed gene product involved in regulating mitosis in Xenopus

Author:

Nakamura H.1,Wu C.1,Kuang J.1,Larabell C.1,Etkin L.D.1

Affiliation:

1. Department of Molecular Genetics and Department of Clinical Investigation, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. lde@notes.mdacc.tmc.edu

Abstract

The regulation of the cell cycle during early development is an important and complex biological process. We have cloned a cDNA, XCS-1, that may play an important role in regulating mitosis during early embryogenesis in Xenopus laevis. XCS-1 is a maternally expressed gene product that is the Xenopus homologue of the human cleavage signal protein (CS-1). XCS-1 transcripts were detected in oocytes with the titer decreasing just prior to the MBT. During development the XCS-1 protein was detected on the membrane and in the nucleus of blastomeres. It was also detected on the mitotic spindle in mitotic cells and on the centrosomes in interphase cells. Overexpression of myc-XCS-1 in Xenopus embryos resulted in abnormal mitoses with increased numbers of centrosomes, multipolar spindles, and abnormal distribution of chromosomes. Also, we observed incomplete cytokinesis resulting in multiple nuclei residing in the same cytoplasm with the daughter nuclei in different phases of the cell cycle. The phenotype depended on the presence of the N terminus of XCS-1 (aa 1–73) and a consensus NIMA kinase phosphorylation site (aa159-167). Mutations in this site affected the ability of the overexpressed XCS-1 protein to produce the phenotype. These results suggest that XCS-1 is a maternal factor playing an important role in the regulation of the cell cycle during early embryogenesis and that its function depends on its state of phosphorylation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3