Affiliation:
1. Department of Cell Biology, Gesellschaft fur Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
Abstract
The spatial and temporal activity of the actin cytoskeleton is precisely regulated during cell motility by several microfilament-associated proteins of which profilin plays an essential role. We have analysed the distribution of green fluorescent protein (GFP)-tagged profilins in cultured and in Listeria-infected cells. Among the different GFP-profilin fusion proteins studied, only the construct in which the GFP moiety was fused to the carboxy terminus of profilin II (profilin II-GFP) was recruited by intracellular Listeria. The in vitro ligand-binding properties of this construct, e.g. the binding to monomeric actin, poly-L-proline and phosphatidylinositol 4,5-bisphosphate (PIP2), were unaffected by GFP. Profilin II-GFP co-localised with vinculin and Mena to the focal adhesions in REF-52 fibroblasts and was distributed as a thin line at the front of protruding lamellipodia in B16-F1 mouse melanoma cells. In Listeria-infected cells, profilin II-GFP was recruited, in an asymmetric fashion, to the surface of Listeria at the onset of motility whereas it was not detectable on non-motile bacteria. In contrast to the vasodilator-stimulated phosphoprotein (VASP), profilin II-GFP localised at the bacterial surface only on motile Listeria. Moreover, the fluorescence intensity of profilin II-GFP directly correlated with the speed of the bacteria. Thus, the use of GFP-tagged profilin II provides new insights into the role of profilins in cellular motility.
Publisher
The Company of Biologists
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献