A checkpoint that monitors cytokinesis in Schizosaccharomyces pombe

Author:

Liu J.1,Wang H.1,Balasubramanian M.K.1

Affiliation:

1. Cell Division Laboratory, Institute of Molecular Agrobiology, The National University of Singapore, Singapore 117604, Republic of Singapore.

Abstract

Cell division in Schizosaccharomyces pombe is achieved through the use of a medially positioned actomyosin ring. A division septum is formed centripetally, concomitant with actomyosin ring constriction. Genetic screens have identified mutations in a number of genes that affect actomyosin ring or septum assembly. These cytokinesis-defective mutants, however, undergo multiple S and M phases and die as elongated cells with multiple nuclei. Recently, we have shown that a mutant allele of the S. pombe drc1(+)/cps1(+) gene, which encodes a 1,3-(beta)-glucan synthase subunit, is defective in cytokinesis but displays a novel phenotype. drc1-191/cps1-191 cells are capable of assembling actomyosin rings and completing mitosis, but are incapable of assembling the division septum, causing them to arrest as binucleate cells with a stable actomyosin ring. Each nucleus in arrested cps1-191 cells is able to undergo S phase but these G(2) nuclei are significantly delayed for entry into the M phase. In this study we have investigated the mechanism that causes cps1-191 to block with two G(2) nuclei. We show that the inability of cps1-191 mutants to proceed through multiple mitotic cycles is not related to a defect in cell growth. Rather, the failure to complete some aspect of cytokinesis may prevent the G(2)/M transition of the two interphase-G(2) nuclei. The G(2)/M transition defect of cps1-191 mutants is suppressed by a mutation in the wee1 gene and also by the dominant cdc2 allele cdc2-1w, but not the cdc2-3w allele. Transient depolymerization of all F-actin structures also allowed a significant proportion of the cps1-191 cells to undergo a second round of mitosis. We conclude that an F-actin and Wee1p dependent checkpoint blocks G(2)/M transition until previous cytokinesis is completed.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3