Trafficking and signaling through the cytoskeleton: a specific mechanism

Author:

Shafrir Y.1,ben-Avraham D.1,Forgacs G.1

Affiliation:

1. Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.

Abstract

A specific mechanism for the intracellular translocation of nonvesicle-associated proteins is proposed. This movement machinery is based on the assumption that the cytoskeleton represents an interconnected network of filamentous macromolecules, which extends over the entire cytoplasm. Diffusion along the filaments provides an efficient way for movement and with this, for signal transduction, between various intracellular compartments. We calculate the First Passage Time (FPT), the average time it takes a signaling molecule, diffusing along the cytoskeleton, to arrive from the cell surface to the nucleus for the first time. We compare our results with the FPT of free diffusion and of diffusion in the permeating cytoplasm. The latter is hindered by intracellular organelles and the cytoskeleton itself. We find that for filament concentrations even below physiological values, the FPT along cytoskeletal filaments converges to that for free diffusion. When filaments are considered as obstacles, the FPT grows steadily with filament concentration. At realistic filament concentrations the FPT is insensitive to local modifications in the cytoskeletal network, including bundle formation. We conclude that diffusion along cytoskeletal tracks is a reliable alternative to other established ways of intracellular trafficking and signaling, and therefore provides an additional level of cell function regulation.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference50 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3