Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease

Author:

Hall G.F.1,Chu B.1,Lee G.1,Yao J.1

Affiliation:

1. Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts 01854, USA. garth_hall@uml.edu

Abstract

The intracellular accumulation of tau protein and its aggregation into filamentous deposits is the intracellular hallmark of neurofibrillary degenerative diseases such as Alzheimer's Disease and familial tauopathies in which tau is now thought to play a critical pathogenic role. Until very recently, the lack of a cellular model in which human tau filaments can be experimentally generated has prevented direct investigation of the causes and consequences of tau filament formation in vivo. In this study, we show that human tau filaments formed in lamprey central neurons (ABCs) that chronically overexpress human tau resemble the ‘straight filaments’ seen in Alzheimer's Disease and other neurofibrillary conditions, and are distinguishable from neurofilaments by their ultrastructure, distribution and intracellular behavior. We also show that tau filament formation in ABCs is associated with a distinctive pattern of dendritic degeneration that closely resembles the cytopathology of human neurofibrillary degenerative disease. This pattern includes localized cytoskeletal disruption and aggregation of membranous organelles, distal dendritic beading, and the progressive loss of dendritic microtubules and synapses. These results suggest that tau filament formation may be responsible for many key cytopathological features of neurofibrillary degeneration, possibly via the loss of microtubule based intracellular transport.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3