Affiliation:
1. Department of Cell Biology and Biophysics, EMBL Heidelberg, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Abstract
Transport of proteins between the endoplasmic reticulum and Golgi apparatus is mediated by two distinct membrane coat complexes, COPI and COPII. Genetic, biochemical and morphological data have accumulated into a model which suggests a sequential mode of action with COPII mediating the selection of cargo and formation of transport vesicles at the ER membrane for ER-to-Golgi transport and COPI mediating recycling of the transport machinery from post-ER membranes. To test this transport model directly in vivo, and to study the precise temporal sequence of COPI and COPII action in ER-to-Golgi transport, we have used time lapse microscopy of living cells to visualise simultaneously the dynamics of COPII and COPI, as well as COPII and GFP tagged secretory markers in living cells. The majority of COPII labelling appears tightly associated with ER membranes that move only within a limited area (less than 2 microm). Secretory cargo segregates from these sites and is then transported to the Golgi apparatus without any apparent association with COPII. COPI-coated transport complexes are seen to form adjacent to the COPII sites on the ER before segregating and moving directionally towards the Golgi apparatus. COPII is not present on these transport complexes and remains associated with the ER. These data demonstrate for the first time directly in vivo that ER-to-Golgi transport is organised in two steps characterised by a sequential mode of action of COPII and COPI.
Publisher
The Company of Biologists
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献