The role of transient ERK2 signals in fibronectin- and insulin-mediated DNA synthesis

Author:

Asthagiri A.R.1,Reinhart C.A.1,Horwitz A.F.1,Lauffenburger D.A.1

Affiliation:

1. Department of Chemical Engineering, Cancer Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA. anand_asthagiri@hms.harvard.edu

Abstract

Both the extracellular matrix and growth factors jointly regulate cell cycle progression via a complex network of signaling pathways. Applying quantitative assays and analysis, we demonstrate here that concurrent stimulation of Chinese hamster ovary (CHO) cells with fibronectin (Fn) and insulin elicits a DNA synthesis response that reveals a synergy far more complex than a simple additive enhancement of response magnitude. CHO cell adhesion to higher Fn density shifts the sensitivity of the DNA synthesis response to insulin concentration from smoothly graded to sharply ‘switch-like’ and dramatically decreases the insulin concentration required for half-maximal response by about 1000-fold. Conversely, treatment with insulin has a milder and less complex effect on the response to varying Fn concentrations. Governing this DNA synthesis response is a common requirement for a transient, cell area-independent extracellular signal-regulated kinase 2 (ERK2) signal. Moreover, we show that the time-integrated value of this ‘pulse’ signal provides an appropriate metric for quantifying the dependence of DNA synthesis on the degree of ERK2 activation. Indeed, in the absence of insulin, the adhesion-mediated response is linearly proportional to ERK2 activation over a broad range of stimulatory Fn and MEK inhibitor amounts. However, in the presence of both Fn and insulin, total integrated ERK2 activity (the sum of Fn- and insulin-mediated signals) no longer serves as a predictor of DNA synthesis, demonstrating that the signaling crosstalk underlying response synergism does not converge at ERK2 activation. Instead, adhesion to higher Fn density enhances insulin stimulation of DNA synthesis, not by increasing insulin-mediated ERK2 activation, but via parallel elevation of at least one other insulin-mediated signal such as IRS-1 phosphorylation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3