Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions

Author:

Sprenger Philipp P.1ORCID,Burkert Lars H.1,Abou Bérengère2,Federle Walter3,Menzel Florian1ORCID

Affiliation:

1. Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Mainz, Germany

2. Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Diderot, Paris, France

3. Department of Zoology, University of Cambridge, Cambridge, UK

Abstract

Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHC. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC composition and viscosity, and the ants’ drought survival. In both species, CHC composition showed strong, predictable responses to temperature regimes. Warm-acclimated individuals had higher proportions of linear alkanes, and less methyl-branched or unsaturated CHCs. These changes coincided with higher solid content and viscosity of CHCs in warm-acclimated ants. Temperature fluctuation caused effects similar to constant-cool conditions in M. rubra, but led to entirely different profiles in M. ruginodis, suggesting that fluctuating and constant conditions pose very different challenges. Acclimation to dry conditions led to higher absolute amounts of CHCs, which increased the ants’ drought survival, whereas temperature acclimation did not. Hence, the temperature-induced CHC changes cannot be explained by the need for waterproofing alone. While these changes could be non-adaptive, we propose that they serve to maintain a constant CHC viscosity, which may be essential for communication and other functions.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3