Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation

Author:

Visconti P.E.1,Bailey J.L.1,Moore G.D.1,Pan D.1,Olds-Clarke P.1,Kopf G.S.1

Affiliation:

1. Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia 19104-6080, USA.

Abstract

The molecular basis of mammalian sperm capacitation, defined functionally as those processes that confer on the sperm the acquisition of fertilization-competence either in vivo in the female reproductive tract or in vitro, is poorly understood. We demonstrate here that capacitation of caudal epididymal mouse sperm in vitro is accompanied by a time-dependent increase in the protein tyrosine phosphorylation of a subset of proteins of M(r) 40,000-120,000. Incubation of sperm in media devoid of bovine serum albumin, CaCl2 or NaHCO3, components which individually are required for capacitation, prevent the sperm from undergoing capacitation as assessed by the ability of the cells to acquire the pattern B chlortetracycline fluorescence, to undergo the zona pellucida-induced acrosome reaction and, in some cases, to fertilize metaphase II-arrested eggs in vitro. In each of these cases the protein tyrosine phosphorylation of the subset of capacitation-associated proteins does not occur. Protein tyrosine phosphorylation of these particular proteins, as well as sperm capacitation, can be recovered in media devoid of each of these three constituents (bovine serum albumin, CaCl2 or NaHCO3) by adding back the appropriate component in a concentration-dependent manner. The requirement of NaHCO3 for these phosphorylations is not due to an alkalinization of intracellular sperm pH or to an increase in media pH. Caput epididymal sperm, which lack the ability to undergo capacitation in vitro, do not display this capacitation-dependent subset of tyrosine phosphorylated proteins in complete media even after extended incubation periods, and do not fertilize metaphase II-arrested eggs in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 520 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3