A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila

Author:

Harden N.1,Loh H.Y.1,Chia W.1,Lim L.1

Affiliation:

1. Glaxo-IMCB, National University of Singapore.

Abstract

The Rho subfamily of Ras-related small GTP-binding proteins is involved in regulation of the cytoskeleton. The cytoskeletal changes induced by two members of this subfamily, Rho and Rac, in response to growth factor stimulation, have dramatic effects on cell morphology. We are interested in using Drosophila as a system for studying how such effects participate in development. We have identified two Drosophila genes, DRacA and DRacB, encoding proteins with homology to mammalian Rac1 and Rac2. We have made transgenic flies bearing dominant inhibitory (N17DRacA), and wild-type versions of the DRacA cDNA under control of an Hsp70 promoter. Expression of the N17DRacA transgene during embryonic development causes a high frequency of defects in dorsal closure which are due to disruption of cell shape changes in the lateral epidermis. Embryonic expression of N17DRacA also affects germband retraction and head involution. The epidermal cell shape defects caused by expression of N17DRacA are accompanied by disruption of a localized accumulation of actin and myosin thought to be driving epidermal cell shape change. Thus the Rho subfamily may be generating localized changes in the cytoskeleton during Drosophila development in a similar fashion to that seen in mammalian and yeast cells. The Rho subfamily is likely to be participating in a wide range of developmental processes in Drosophila through its regulation of the cytoskeleton.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3