Affiliation:
1. Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
Abstract
The mammalian zona pellucida is an extracellular matrix that surrounds growing oocytes, ovulated eggs and early embryos. The mouse zona is composed of three sulfated glycoproteins: ZP1, ZP2 and ZP3. Each is critically involved in fertilization, the postfertilization block to polyspermy and protection of the preimplantation embryo. We have previously isolated cDNAs encoding mouse ZP2 and ZP3 and now report the isolation of a full-length cDNA encoding ZP1. Mouse ZP1 is composed of a 623 amino acid polypeptide chain with a signal peptide and a carboxyl terminal transmembrane domain, typical of all zona proteins. Sequence comparison demonstrate that mouse ZP1 is an orthologue of a rabbit zona protein, R55. The expression of R55 has been reported previously in both oocytes and granulosa cells. However, by northern analysis and in situ hybridization with 33P-labelled antisense probes to each of the three mouse zona mRNAs, we have determined that the expression of each mouse zona gene is restricted to the oocyte. ZP2 transcripts, but not ZP1 or ZP3, are detected in resting (15 microns diameter) oocytes, and all three zona transcripts coordinately accumulate as oocytes begin to grow. Together they represent approximately 1.5% of the total poly(A)+ RNA in 50–60 microns oocytes. In the latter stages of oogenesis, their abundance declines and each zona transcript is present in ovulated eggs at less than 5% of its maximal level. No zona transcripts were detected above background signal in granulosa cells. We conclude that, in mice, the three zona pellucida genes are expressed in a coordinate, oocyte-specific manner during the growth phase of oogenesis. Our data support the hypothesis that the transcription of the zona genes is controlled, in part, by shared regulatory element(s).
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献