Affiliation:
1. Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Portugal.
Abstract
The coiled body is an ubiquitous nuclear organelle that contains essential components of the pre-mRNA splicing machinery as well as the nucleolar protein fibrillarin. Here we have studied the biogenesis of the coiled body in early mouse embryos. The results show that coiled bodies form and concentrate splicing snRNPs as early as in the maternal and paternal pronuclei of 1-cell embryos. This argues that the coiled body is likely to play a basic role in the nucleus of mammalian cells. In order to correlate the appearance of coiled bodies with the onset of transcriptional activity, embryos were incubated with brominated UTP and the incorporated nucleotide was visualized by fluorescence microscopy. In agreement with previous studies, transcriptional activity was first observed during the 2-cell stage. Thus, coiled bodies form before activation of embryonic gene expression. The appearance of coiled bodies in 1-cell embryos was preceded by the formation of morphologically distinct structures that also contain coilin and which we therefore refer to as pre-coiled bodies. At the electron microscopic level pre-coiled bodies have a compact fibrillar structure, whereas coiled bodies resemble a tangle of coiled threads. Although both pre-coiled bodies and coiled bodies contain the nucleolar protein fibrillarin, the assembly of coiled bodies is separated both in time and in space from ribosome synthesis. Our results suggest that the embryonic ‘nucleolus-like body’ is a structural scaffold that nucleates independently the formation of the coiled body and the assembly of the machinery responsible for ribosome biosynthesis.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献