Affiliation:
1. University of Colorado, Boulder 80309-0347, USA.
Abstract
In mature striated muscle, intermediate filaments (IFs) are associated with the periphery of Z-discs and sites of myofibril-membrane attachment. Previously T. Schultheiss, Z. X. Lin, H. Ishikawa, I. Zamir, C. J. Stoeckert and H. Holtzer (1991) J. Cell Biol. 114, 953) reported that the disruption of IF organization in cultured chick myotubes had no detectable effect on muscle cell structure. Cultured muscle is not, however, under the mechanical loads characteristic of muscle in situ. The dorsal myotomal muscle (DMM) of the Xenopus tadpole provides an accessible model system in which to study the effects of mutant IF proteins on an intact, functional muscle. DNAs encoding truncated forms of Xenopus vimentin or desmin were injected into fertilized Xenopus eggs. Embryos were allowed to develop to the tadpole stage and then examined by confocal or electron microscopy. DMM cells containing the truncated IF polypeptides displayed disorganized IF systems. While the alignment of Z-lines appeared unaffected, cells accumulating mutant IF polypeptides displayed abnormal organization at the intersomite junction. Myocyte termini are normally characterized by deep invaginations of the sarcolemma. In myocytes expressing mutated IF polypeptides, these membrane invaginations were reduced or completely absent. Furthermore, the attachment of myofibrils to the junctional membrane was often aberrant or completely disrupted. These results suggest that in active muscle IFs play an important role in the organization and/or stabilization of myofibril-membrane attachment sites.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献