Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny

Author:

Guz Y.1,Montminy M.R.1,Stein R.1,Leonard J.1,Gamer L.W.1,Wright C.V.1,Teitelman G.1

Affiliation:

1. Department of Anatomy and Cell Biology, SUNY Health Science Center at Brooklyn 11203.

Abstract

The XlHbox 8 homeodomain protein of Xenopus and STF-1, its mammalian homolog, are selectively expressed by beta cells of adult mouse pancreatic islets, where they are likely to regulate insulin expression. We sought to determine whether the expression of the homeobox protein/s during mouse embryonic development was specific to beta cells or, alternatively, whether XlHbox 8/STF-1 protein/s were initially expressed by multipotential precursors and only later became restricted to the insulin-containing cells. With two antibodies, we studied the localization of STF-1 during murine pancreatic development. In embryos, as in adults, STF-1 was expressed by most beta cells, by subsets of the other islet cell types and by mucosal epithelial cells of the duodenum. In addition, most epithelial cells of the pancreatic duct and exocrine cells of the pancreas transiently contained STF-1. We conclude that in mouse, STF-1 not only labels a domain of intestinal epithelial cells but also provides a spatial and temporal marker of endodermal commitment to a pancreatic and subsequently, to an endocrine beta cell fate. We propose a model of pancreatic cell development that suggests that exocrine and endocrine (alpha, beta, delta and PP) cells arise from a common precursor pool of STF-1+ cells and that progression towards a defined monospecific non-beta cell type is correlated with loss of STF-1 expression.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 339 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3